O . Davydov - R . Morandi - A . Sestini SCATTERED DATA APPROXIMATION WITH A HYBRID SCHEME
نویسندگان
چکیده
A local hybrid radial–polynomial approximation scheme is introduced here to modify the scattered data fitting method presented in [6], generating C1 or C2 approximating spline surfaces. As for the original method, neither triangulation nor derivative estimate is needed, and the computational complexity is linear. The reported numerical experiments relate to two well known test functions and confirm both the accuracy and the shape recovery capability of the proposed hybrid scheme.
منابع مشابه
Local hybrid approximation for scattered data fitting with bivariate splines
We suggest a local hybrid approximation scheme based on polynomials and radial basis functions, and use it to improve the scattered data fitting algorithm of [7]. Similar to that algorithm, the new method has linear computational complexity and is therefore suitable for large real world data. Numerical examples suggest that it can produce high quality artifact–free approximations that are more ...
متن کاملLocal RBF Approximation for Scattered Data Fitting with Bivariate Splines
In this paper we continue our earlier research [4] aimed at developing efficient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms w...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملScattered Data Fitting on Surfaces Using Projected Powell-Sabin Splines
We present C methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ω embedded into R. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorit...
متن کاملAdaptive scattered data fitting by extension of local approximations to hierarchical splines
We introduce an adaptive scattered data fitting scheme as extension of local least squares approximations to hierarchical spline spaces. To efficiently deal with non-trivial data configurations, the local solutions are described in terms of (variable degree) polynomial approximations according not only to the number of data points locally available, but also to the smallest singular value of th...
متن کامل